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SUMMARY

We construct several high-order residual-distribution methods for two-dimensional unsteady scalar
advection on triangular unstructured meshes. For the �rst class of methods, we interpolate the solu-
tion in the space–time element. We start by calculating the �rst-order node residuals, then we calculate
the high-order cell residual, and modify the �rst-order residuals to obtain high accuracy. For the second
class of methods, we interpolate the solution in space only, and use high-order �nite di�erence approx-
imation for the time derivative. In doing so, we arrive at a multistep residual-distribution scheme. We
illustrate the performance of both methods on several standard test problems. Copyright ? 2005 John
Wiley & Sons, Ltd.

KEY WORDS: residual-distribution schemes; �uctuation splitting schemes; unstructured meshes;
hyperbolic problems

1. INTRODUCTION

The topic of this article is the approximation of linear and nonlinear time-dependent hyperbolic
problems on unstructured meshes. Although we concentrate here on the 2D case, the extension
to 3D is straightforward. Also, we provide several 1D numerical illustrations. We consider
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680 R. ABGRALL, N. ANDRIANOV AND M. MEZINE

the following model problem for the scalar unknown u:

@u
@t
+

@f(u)
@x

+
@g(u)
@y

=0; x∈�⊂R2

u(x; t)= ub(x; t) on the in�ow part of @�

u(x; 0)= u0(x) at t=0

(1)

In what follows, we will consider the advection (f; g)= �u, and the 1D and 2D Burgers
equation (f; g)= ( u

2

2 ; 0), (f; g)= ( u
2

2 ; u).
In this work, we are interested in the so-called residual-distribution (RD) or �uctuation

splitting schemes introduced by Deconinck et al. [1]. These methods can be seen as �nite
element methods where the arti�cial dissipation is tuned according to ideas coming from the
�nite di�erence high-resolution context. The RD methods use a continuous representation of
the unknowns and have the most possible compact stencil among the discontinuous Galerkin
or �nite volume methods. This latter property is advantageous for parallelization and for
high-order extensions.
This paper contains preliminary results on stabilized very high-order RD schemes for (1).

In Section 2, we recall several results on the second-order RD scheme for unsteady problems,
described in Reference [2]. In Section 3, we introduce two versions of higher-order extension
of this RD scheme. Finally, Section 4 contains some numerical examples.
Throughout the paper, we will consider a triangulation of �, consisting of generic triangles

Tj with characteristic size h, j=1; : : : ; nt . The vertices of a triangle T are denoted by Mi1 ,
Mi2 , Mi3 or simply by 1; 2; 3 if no ambiguity occurs. The time step is �t and tn= n�t. The
approximate solution to (1) is denoted by uh(x; t) and its values at (Mj; tn) by un

j .

2. RESIDUAL DISTRIBUTION SCHEMES, SECOND-ORDER UNSTEADY CASE

For simplicity, we consider here problem (1) with a constant advection speed. Starting from
a triangle T , we de�ne the space–time prism K =T × [tn; tn+1]. The numerical solution of (1)
is interpolated in K linearly in space and time:

uh(x; t)= un+1(x)
(t − tn)
�t

+ un(x)
(tn+1 − t)
�t

(2)

where un and un+1 are linear interpolations between {un
j1 ; u

n
j2 ; u

n
j3} and {un+1

j1 ; un+1
j2 ; un+1

j3 },
respectively. The total residual in K is de�ned as

�K :=
∫ tn+1

tn

∫
T

(
@uh

@t
+ � · ∇uh

)
dx dt (3)

Introducing the inward scaled normal ni opposite to Mi in T , and setting ki= 1
2� · ni, we have

�K =
|T |
3

3∑
j=1
(un+1

j − un
j ) +

�t
2

3∑
j=1

ki(un+1
j + un

j )

The idea of RD schemes is to split �K into sub-residuals �K
i , which are ‘sent’ by the prism

K to its six vertices, and then to gather the sub-residuals for any vertex in order to update
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TOWARDS VERY HIGH-ORDER ACCURATE SCHEMES FOR UNSTEADY PROBLEMS 681

the solution. The de�nition of the sub-residuals uses the causality principle: the past does
not depend on the future. This means that only the sub-residuals sent by K to the vertices
(Mj; tn+1)j=1;3 may be non-zero. This enables one to decouple the time slabs. Then, conserva-
tion is guaranteed provided the following relation holds:∑

(Mj;tn+1)∈ K
�K

j =�
K (4)

The RD scheme is then de�ned by ∑
K�(Mi;tn+1)

�K
i =0 (5)

Now we need to de�ne the sub-residuals. In doing so, we wish to ensure certain stability and
accuracy properties.
Stability requirements: Consider, as in [2]

�K
i =

|T |
3
(un+1

i − un
i ) +

�t
2
(k+i (u

n+1
i − ũn+1) + k+i (u

n
i − ũn))

ũn =N

( ∑
j∈T

k−
j un

j

)
; ũn+1 =N

( ∑
j∈T

k−
j un+1

j

)
; N =

( ∑
j∈T

k−
j

)−1
(6)

The N scheme (5), (6) leads to the system Aun+1 =Bun, where A and B are constant matrices.
The analysis of Reference [2] shows that A is a monotone matrix whatever the time step �t,
and that B has positive entries provided �t maxT

∑
j∈T k+j =|T |61: Therefore, the N scheme is

L∞ stable under the CFL-like condition. Numerical experiments show that the scheme remains
monotone also when this condition is violated by a large factor. Also, the N scheme (5), (6)
is unconditionally L2 stable, see Reference [2] for details.
Following Ricchiutto [3], consider a variant of the N scheme:

�T
i =

|T |
3
(un+1

i − un
i ) +�tk+i (u

n+1
i − ũn+1) (7)

In Appendix A, we show that scheme (5), (7) leads to the system Aun+1 = un, where A is
a monotone matrix whatever the time step �t. This guarantees unconditional L∞ stability.
Also, scheme (5), (7) is unconditionally L2 stable; see Appendix A for details. Note that the
sub-residuals (7) do not satisfy the conservation requirement (4).
Accuracy requirement: For smooth exact solutions to (1) and regular meshes, scheme (5)

is formally second-order in space and time if for all prisms K the sub-residuals satisfy

�K
i =O(h3;�t3) (8)

see References [2, 4]. Among several ways of ful�lling condition (8), the easiest one is the
linearity preserving property; see References [1, 4]. It ensures that for regular meshes, the
distribution coe�cients �i=�K

i =�
K are uniformly bounded independent of h and �t.

It is known that it is impossible to have a linear scheme, i.e. the distribution coe�cients
�i do not depend on uh, which is both LP and L∞ stable. In the next paragraph, we sketch
construction schemes that satisfy both these properties.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:679–691



682 R. ABGRALL, N. ANDRIANOV AND M. MEZINE

Accuracy and stability: Consider a �rst-order monotone scheme (5) with residuals {�L
i }

and the corresponding distribution coe�cients �i=�L
i =�

K . We wish to construct a second-
order scheme (5) with {�H

i } such that (i) the scheme is conservative, (ii) the scheme satis�es
the maximum principle, and (iii) �̂i=�

H
i =�K are uniformly bounded in order to guarantee the

LP condition (8). This approach is described in Reference [2] and originates from a remark of
Sidilkover. He noticed that for steady scalar problems the condition �H

i =�L
i ¿ 0 for any trian-

gle T guarantees the maximum principle. Conservation requires that
∑

j �
L
i =

∑
j �

H
i =�

K .

Hence, the problem reduces to the construction of a mapping from (�1; �2; �3) to (�̂1;�̂2;�̂3)
such that (i)

∑
i �i=

∑
i �̂i=1 (conservation constraint), (ii) �i�̂i¿0, i=1; 2; 3 (monotonicity

constraint), and (iii) �̂i are bounded, i=1; 2; 3 (LP constraint). In Reference [5], we have pre-
sented a geometrical interpretation of these conditions, and a systematic way of constructing
the mapping. The simplest formula of the type is

�̂i=
�+i∑
j �

+
j
; �+i = max(0; �i) (9)

Note that the division in (9) is always well de�ned because

∑
j
�+j =1−∑

j
�̂

−
j ¿1 (10)

The RD scheme is then de�ned by (5), the de�nition of �L
i , �

K and the non-linear limiter
(9). This leads to a non-linear scheme of the type Aun+1 =Bun, where now A and B depend
on un+1 and un. E�ciency requires that the time step be as large as possible. For the N
scheme (6), we have the restriction on time step since it is L∞ stable under the CFL-type
condition. However, a number of degrees of freedom are still available. For example, one does
not really need that the underlying �rst-order scheme �L

i be conservative, since conservation
is recovered for the second-order scheme �H

i due to
∑

j �j=1. Thus, it is possible to use

Ricchiuto’s version of the N scheme (7) to de�ne �i, and use (9) to calculate �̂i. We still
have a conservative scheme! However, one must be aware that property (10) is no longer
valid, so that there is no guarantee that �i are indeed well de�ned. In practice, we have never
encountered this di�culty.

3. VERY HIGH-ORDER RESIDUAL DISTRIBUTION SCHEMES

In Reference [5], we have considered the very high-order discretization of the steady version
of (1). Here, we extend this work to the unsteady case. We present two versions that di�er
by the time approximation in (1). In both cases, we consider a space–time element K =T ×
[tn; tn+1], and introduce a sub-triangulation of T as follows.
For each point x∈T , we introduce its barycentric co-ordinates (a; b; c). As in Reference [5],

from the points Ml= {i=p; j=p; (p − i − j)=p}, 06i; j6p, we de�ne a sub-triangulation of T ,
consisting of p2 sub-triangles, see Figure 1 for the case p=2. We denote by T� any of
these p2 sub-triangles, K� :=T� × [tn; tn+1], and by � any of the (p+ 1)(p+ 2)=2 degrees of
freedom in T .

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:679–691
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4 21

3

6 5

Figure 1. Sub-triangulation of T used for the quadratic interpolation.

Now, we can de�ne the pth-order basis functions on the triangle T such that �l(Mm)= �lm,
�l ∈ Pp, where �lm is the Kronecker symbol. The pth-order interpolation un at �xed time t n

is then

un=
(p+1)(p+2)=2∑

l=1
un(Ml)�l (11)

In order to construct an RD scheme, we need to split the total residual �K into the sub-
residuals ‘sent’ to the degrees of freedom of K . In doing so, we use the causality and
conservation principles analogous to Section 2, i.e.

�K�

(�; tn) := 0; �K
(�; tn+1) =

∑
K��(�; tn+1); K�⊂K

�K�
� (12)

Then, the RD scheme is de�ned by ∑
K�(�;tn+1)

�K
(�; tn+1) = 0 (13)

The accuracy of the scheme (13) is described by

Proposition 1
A necessary condition for scheme (13) to reach (p+1)th order in space and (q+1)th order
in time, i.e. u(x; t) − uh(x; t)=O(hp+1;�t q+1), where u is the smooth solution to (1), is that
�K

� =O(hp+1;�t q+1). This is true if uh is polynomial of degree p in space and q in time.

The proof is similar to that of Reference [5] since we can consider (1) as a steady problem
in R3. Similar to Section 2, we construct the sub-residuals �K

� as follows:

1. For all sub-triangles T�, (i) calculate the �rst-order sub-residuals �L
�1 ;�

L
�2 ;�

L
�3 by the N

scheme (6) (or alternatively by Ricchiutto’s version (7)), (ii) compute �K� with high
accuracy (see below), and (iii) compute high-order sub-residuals �H

�i
:=�̂�i

�K� using

�̂�i
=

(�L
�i
=�K�)+∑3

j=1(�L
�j
=�K�)+

(14)

2. Accumulate contributions to �K
� from di�erent sub-triangles �K

(�;tn+1) :=
∑

T��� �
K�
� .
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684 R. ABGRALL, N. ANDRIANOV AND M. MEZINE

The conservation condition (12) is satis�ed by construction when
∑3

i= 1�̂�i
=1. The scheme

(13) is monotone since �L
� �

H
� ¿0. Considering how �L

� is constructed, this implies that the
time step for the high-order scheme is constrained by the CFL-type condition of the low-order
scheme. Finally, scheme (13) has a high order of accuracy since �̂�i

are bounded. Below, we
describe two ways of computing the total residuals �K� , which lead to di�erent versions of
scheme (13).

3.1. High-order space–time interpolation

Let p and q be two integers greater than 1. We consider the following interpolation in the
space–time element K :

uh(x; t)=Ln−q+2(t)un−q+2(x) + · · ·+ Ln(t)un(x) + Ln+1(t)un+1(x) (15)

Here Ln−q+2(t); : : : ; Ln+1(t) are the Lagrange interpolants of degree q between the time levels
tn−q+2 and tn+1. The functions un−q+2(x); : : : ; un+1(x) are given by (11). Observe that we
need the linear interpolation between the time levels tn and tn+1 to get u − uh=O(hp+1;�t2),
quadratic interpolation between the time levels tn−1, tn and tn+1 to get u − uh=O(hp+1;�t3)
and so on. At each time level, we need (p+ 1)(p+ 2)=2 degrees of freedom for (p+ 1)th
order of spatial accuracy.
Using the high-order space–time interpolation (15), we can compute the residual over K�

�K� =
∫ tn+1

tn

∫
T�

(
@uh

@t
+ � · ∇uh

)
dx dt (16)

which basically consists of computing integrals of the form

∫
T�

un(x) dx;
∫
T�

� · ∇un(x) dx;
∫ tn+1

tn
Ln(t) dt (17)

The �rst integral in (17) is evaluated using Gaussian quadrature in barycentric co-ordinates,
the second by 1D Gaussian quadrature (after transformation to the integral over @T� by Gauss’
theorem), and the third by a Newton–Cotes quadrature.
Below, we present several high-order approximations to the residual (16); they di�er just

in the order of Lagrange interpolants in (15) and the type of the Newton–Cotes quadrature
formula used to approximate the time integral in (17).
Third order in time: If we use quadratic time interpolation in (15) together with the Simpson

rule for the time integral in (17), the residual is O(hp+1;�t4) with

�K� =
∫
T�

(un+1(x)− un(x)) dx +
5�t
12

∫
T�

� · ∇un+1(x) dx

+
2�t
3

∫
T�

� · ∇un(x) dx − �t
12

∫
T�

� · ∇un−1(x) dx (18)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:679–691
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Fourth order in time: If we use cubic time interpolation in (15) together with the 3
8 rule

for the time integral in (17), the residual is O(hp+1;�t5) with

�K� =
∫
T�

(un+1(x)− un(x)) dx +
3�t
8

∫
T�

� · ∇un+1(x) dx

+
19�t
24

∫
T�

� · ∇un(x) dx − 5�t
24

∫
T�

� · ∇un−1(x) dx

+
�t
24

∫
T�

� · ∇un−2(x) dx (19)

Observe that the RD scheme (13) with residuals (18) or (19) is a multistep RD scheme.
Indeed, in order to update the solution at time level tn+1, we will need to use the values of the
solution from previous time levels. The number of these time levels depends on the temporal
accuracy of scheme (13).

3.2. High-order �nite di�erence in time

In the previous paragraph, the idea was �rst to reconstruct the solution and then to compute the
prismatic residual exactly as was done in Reference [2]. Alternatively, one can approximate the
time derivative in (1) by a high-order �nite di�erence approximation, but still use high-order
interpolation in space. For example, setting �un(x) := un+1(x) − un(x), one can approximate
(1) with

(1 + �+  )
�un(x)
�t

− �
�un−1(x)
�t

−  
�un−2(x)
�t

+ � · ∇un+1(x)=0 (20)

This approximation is second-order accurate in time if (�;  )= (12 ; 0) and third-order accurate
if (�;  )= (76 ;

1
3 ). We can view (20) as the steady problem for x ∈ R2:

�un+1(x) + � · ∇un+1(x)= S(x) (21)

with �=(1 + �+  )=�t and the ‘source term’ S(x)= (1 + �+  )=�tun(x)+��un−1(x)=�t+
 �un−2(x)=�t. For the steady problem (21), we de�ne the residual over the prism K� as
follows:

�K� =
∫
T�

(
�un+1(x) + � · ∇un+1(x)− S(x)

)
dx (22)

As in the previous paragraph, the RD scheme (13) with the residual (22) is a multistep RD
scheme.

3.3. Comments on the numerical procedure

In both cases, the scheme writes Aun+1 =Bun, where matrices A and B both depend on un+1,
un and �t. The linear system is solved by a standard numerical procedure. Here we have
chosen a Jacobi-like iterative method.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:679–691
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4. NUMERICAL EXAMPLES

We present several 1D and 2D examples; the 1D schemes are obtained from the ones presented
here if one replaces triangles with intervals. In that case, the triangles are replaced by intervals
with even indices [2p; 2p+2], p∈Z, and the sub-triangles are [2p; 2p+1], [2p+1; 2p+2].
We have always used schemes which are third-order in space.

4.1. One-dimensional examples

Here use the space–time interpolation method of Section 3.1 for the 1D version of (1) with
�=1 and the initial data

u0(x)=1 + cos(4�(x − 0:35)) if x∈ [0:1; 0:6] 0 else (23)

in [0; 1] or with the initial condition

u0(x)=

{
1 if x60:5

0 else
(24)

The solutions are represented in Figures 2 and 4, the L1 and L2 errors in Figure 3. A CFL
number of 0.5 is used with 101 mesh points over 101 time steps.
We have also considered the Burgers equation with the initial conditions

u0(x)=

{−1 if x60:5

0:1 else
(25)

which gives a fan

u0(x)=

{−0:1 if x60:5

1 else
(26)

0.35 0.4 0.4 0.45 0.5
0

0.5

1

O3x-3t
Exact
O3x-2t
O2
O1

1.5

1.6

1.7

1.8

1.9

2

O3x-3t
Exact
O3x-2t
O2
O1

(a) (b)

Figure 2. Zooms of the solution of the transport problem with (23). Legend; O3x−3t: third-order in time
and space; O3x − 2t: third-order in space, second-order in time; O2: second-order; O1: �rst-order.
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-6 -5 -4 -3 -6 -5 -4 -3
-10

-8

-6

-4

L1
Full domain

Slope 2 
O2
O3

-10

-12

-8

-6

-4

L2
Full domain

O2
O3
Slope 2 
Slope 3 
Slope 2.5

(a) (b)

Figure 3. Error on 1 + cos(4�(x − 0:35) if x ∈ [0:1; 0:6], 0 else. (a) L1; (b) L2.

0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

O3x-3t
Exact
O2
O1

0.2 0.4 0.6
-1.2

-1

-0.8

-0.6

-0.4

-0.2

1.1102e-16

0.2

O3-3
Exact
O3-2
O2-2

Transport eq.with (24) Burgers eq. with (25)

Figure 4. Solution for the nonsmooth initial conditions. O3x − 3t: third-order in time and space;
O3x − 2t: third-order in space, second-order in time.

which gives a choc propagating at speed u=0:45 to the right, and

u0(x)= sin(2�x) (27)

for which a shock appears after time t∗= 1
� .

In the case of the Burgers equation, we had to set up the following entropy conditions.
If in a sub-cell [xj; xj+1], where j=2p or 2p+ 1, we have ujuj+160 (case of an expansion
shock), the scheme reduces to �rst-order in that sub-cell. Since we are in 1D, this does not
modify the conservation property of the scheme. Note that if the criterion is ujuj+160 and
uj6uj+1 as it should be, the second-order scheme works �ne but the third-order one may
produce a slight overshoot in Figure 4 (if the initial condition changes sign only), and for
some �x. The reason seems numerical, but we have not been able to �nd it (Figure 5).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:679–691
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0.45 0.46 0.47 0.48 0.49 0.5 0.51
0.95

0.96

0.97

0.98

0.99

1

First order
Second order
Third order (x-t)

0.56 0.57 0.58 0.59 0.6
-0.25

-0.05

0.15

0.35

0.55

0.75

0.95

Third order
Second order
First order
Exact

Initial conditions (27) Initial conditions (26)

Figure 5. Zoom of the solution of the Burgers equation with (27) around x=0:5. O3x − 3t: third-order
in time and space; O3x − 2t: third-order in space, second-order in time.

Mesh First order, max = 0.26

Second order, max = 0.69 Third order, max = 0.74

Figure 6. Results for the circular advection problem after one rotation. Initial condition: u0(x; y)=
max(1: − (r=:2)2; 0:) with r=

√
(x − 0:5)2 + y2. The minimum value is always 0.

4.2. Two dimensional examples

We have run the scheme of Section 3.2 with second-order accuracy in time only based
on Ricchiuto’s N scheme (7) and a CFL number set to 2. The scheme is unconditionally

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:679–691
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u,  min = 0,  max = 0.02705

Mesh First order, max = 2.7 10 -2

Second order, max = 7.1 10 
-2 Third order, max = 9.7 10 -2

Figure 7. Results for the circular advection problem (ten rotations). The minimum value is always 0.

Second order, max = 0.78 Third order, max = 0.75

Figure 8. Results for the Burgers-like problem. The minimum value is always 0.

stable. The problem is the circular advection problem. The mesh is displayed in Figure 6.
The initial condition is set to u(x; y)= max(1: − (r=:2)2; 0:) where r=

√
(x + 0:5)2 + y2. The

result is displayed in Figure 6 for the �rst-order scheme, (p; q)= (1; 1) (second-order version
of Reference [2]) and (p; q)= (1; 2) (second-order in time, third-order in space), after one
rotation. The CFL is set to 2. After ten rotations, with a very regular mesh in order to minimize
its e�ect, the result is displayed in Figure 7. Of course, the results are not very good but
the improvement between second and third order is tremendous, despite the crudeness of the
mesh.
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The scheme also works on nonlinear problems, for example (f; g)= (u2=2; u), where the
initial condition is a cylinder. The results are displayed in Figure 8 for the mesh of 6. This
result shows that one can handle nonlinear problems without major di�culty.

5. CONCLUSIONS

In this paper, we have sketched several strategies to construct very high-order schemes for
scalar linear and nonlinear hyperbolic problems. Our preliminary results show that the method
is promising, especially in terms of accuracy. We note that the stencil remains compact in
space, contrary to ENO-like methods.
Many things remain to be done. We list a few. First, Equation (13) always leads to a

nonlinear implicit equation. It is of fundamental importance to solve it well, otherwise accuracy
is not guaranteed. It is important to develop e�cient and reliable strategies for this problem.
The solution of nonlinear hyperbolic systems must be investigated and those of parabolic
problems like the Navier–Stokes equations. We are currently investigating these problems.

APPENDIX A: STABILITY ANALYSIS FOR RICCHIUTO’S N SCHEME

In this analysis, we assume a compactly supported solution. Starting from the N scheme
(5), (7), we rewrite it as

|Ci|un+1
i +

∑
j �=i

cij(un+1
i − un+1

j )= |Ci|un
i

with cij=
∑

T�i c
T
ij and cTij =�tk+i Nk−

j . Here |Ci|=
∑

T�i |T |=3 is the area of the dual cell.
L∞ stability: The scheme writes Aun+1 = un with aii=1+

∑
j cij=|Ci|¿0, aij= −cij=|Ci|¡0

if i �= j so that A−1 is a matrix with positive entries. This guarantees the maximum principle.
Energy analysis: After multiplication by un+1

i and summation, we get

En+1 +
∑
i

∑
j
cij(un+1

i − un+1
j )un+1

i =
∑
i

|Ci|un
i u

n+1
i

where En+1 =
∑

i |Ci|(un+1
i )2. Then we rearrange the second term,

∑
i

∑
j cij(u

n+1
i −un+1

j )un+1
i =∑

T

∑
i; j∈T cTij(u

n+1
i − un+1

j )un+1
i : The second summation

∑
i;j∈T cij(un+1

i − un+1
j )un+1

i can be
rewritten as 1

2

∑
j kj(u

n+1
j )2 + 1

2

∑
i;j∈T cTij(u

n+1
i − un+1

j )2 because we have the relations∑
j �=i(c

T
ij − cTji)= ki. Coming back to the problem, we have

2En+1 +
∑
T

∑
j
kT
j (u

n+1
j )2 +

∑
i; j

cij(un+1
i − un+1

j )2 =2
∑
i

|Ci|un+1
i un

i

Assuming now a constant velocity �eld, the second term vanishes and we get

En+16
∑
i

|Ci|un+1
i un

i61=2(E
n+1 + En)

so that En+16En unconditionally on �t.
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